Semiparametric estimation of dynamic discrete choice models

نویسندگان

چکیده

We consider the estimation of dynamic binary choice models in a semiparametric setting, which per-period utility functions are known up to finite number parameters, but distribution shocks is left unspecified. This setup differs from most existing identification and literature for discrete models. To show we derive exploit new recursive representation unknown quantile function shocks. Our estimators straightforward compute, resemble classic closed-form on regression average derivative estimation. Monte Carlo simulations demonstrate that our estimator performs well small samples.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Estimation of Dynamic Discrete Choice Models

We propose a new estimator for dynamic programming discrete choice models. Our estimation method combines the Dynamic Programming algorithm with a Bayesian Markov Chain Monte Carlo algorithm into one single Markov Chain algorithm that solves the dynamic programming problem and estimates the parameters at the same time. Our key innovation is that during each solution-estimation iteration both th...

متن کامل

Simulated Maximum Likelihood Estimation of Dynamic Discrete Choice Statistical Models

This article reports Monte Carlo results on the simulated maximum likelihood estimation of discrete panel statistical models. Among them are Markov, Generalized Poly, Renewal, and Habit Persistence Models with or without unobserved heterogeneity and serially correlated disturbances. We investigate statistical properties and computational performance of simulated maximum likelihood methods and a...

متن کامل

Semiparametric estimation of multinomial discrete-choice models using a subset of choices

Nonlogit maximum-likelihood estimators are inconsistent when using data on a subset of the choices available to agents. I show that the semiparametric, multinomial maximum-score estimator is consistent when using data on a subset of choices. No information is required for choices outside of the subset. The required conditions about the error terms are the same conditions as for using all the ch...

متن کامل

Direct Semiparametric Estimation of Single-index Models with Discrete Covariates

Ha .. rdle and Stoker (1989), Powell, et al. (1989), and Stoker (1991) have developed average derivative estimators of the parameter in the singleindex model E(Y X=x) = G(x ), where G is an unknown function and X is a random vector. These estimators are non-iterative and, therefore, easy to compute. However, they require X to be continuously distributed, which precludes their use in many applic...

متن کامل

Identication of Structural Dynamic Discrete Choice Models

This paper presents new identi…cation results for the class of structural dynamic discrete choice models that are built upon the framework of the structural discrete Markov decision processes proposed by Rust (1994). We demonstrate how to semiparametrically identify the deep structural parameters of interest in the case where utility function of one choice in the model is parametric but the dis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Econometrics

سال: 2021

ISSN: ['1872-6895', '0304-4076']

DOI: https://doi.org/10.1016/j.jeconom.2020.01.024